哎 就不能完全对齐openai么 这样搞得好麻烦
1 个赞
大佬,太强啦!受益良多
太强了 佬
佬,反馈一个BUG,以下这段代码给_format_error传入的是str,而_format_error的error设定为byte变量会进行error.decode操作(但str没有decode函数),如果内容解析失败进行错误格式化时会再次报错
# 格式化错误信息,这里传入错误类型和详细原因(包括出错内容和异常信息)
error_detail = f"解析失败 - 内容:{json_str},原因:{e}"
yield self._format_error("JSONDecodeError", error_detail)
return
将_format_error函数修改为下面这样就可以避免发生这个问题了:
def _format_error(self, status_code: int, error: bytes) -> str:
"""错误格式化保持不变"""
try:
# 检查error类型是否为bytes
if isinstance(error, bytes):
err_msg = json.loads(error.decode(errors="ignore")).get(
"message", error.decode(errors="ignore")
)[:200]
else:
err_msg = json.loads(error).get("message", error)[:200]
except:
# 如果错误解析失败,直接截取前200个字符
err_msg = (
error.decode(errors="ignore")[:200]
if isinstance(error, bytes)
else error[:200]
)
return json.dumps(
{"error": f"HTTP {status_code}: {err_msg}"}, ensure_ascii=False
)
1 个赞
感谢佬,已经修改
1 个赞
openwebui必须得自己实现思维链的展示吗
如果api返回<think></think>
标签则不用单独实现
现在貌似都转reasoning_content了
这个openwebui还显示不了吗
感谢感谢!!实测已经没问题了!大佬很强!
1 个赞
破案了,log里报错,是生成搜索关键字的步骤里有问题
completions:1 Failed to load resource: the server responded with a status of 404 (Not Found)
可能是id的问题,然后我去设置>界面>设置任务模型>外部模型 。
设置一个具体的模型(比如v3),而不是当前模型,联网搜索就行了
2 个赞
用deepseek的官方api,只有重启openwebui后第一次可以正常询问ai,后面就没有反应了
正常完成后应该不会有这个结束标记,我现在手边没有电脑,一会我看下是怎么回事
1 个赞
"""
title: DeepSeek R1
author: zgccrui
description: 在OpwenWebUI中显示DeepSeek R1模型的思维链 - 仅支持0.5.6及以上版本
version: 1.2.9
licence: MIT
"""
import json
import httpx
import re
from typing import AsyncGenerator, Callable, Awaitable
from pydantic import BaseModel, Field
import asyncio
class Pipe:
class Valves(BaseModel):
DEEPSEEK_API_BASE_URL: str = Field(
default="https://aifree4.fly.dev/v1",
description="DeepSeek API的基础请求地址",
)
DEEPSEEK_API_KEY: str = Field(
default="sk-SqkvYZROzSd0dLetAEZEzKwwQ9X4hGizrrWA8qJ6JddPF81e",
description="用于身份验证的DeepSeek API密钥,可从控制台获取",
)
DEEPSEEK_API_MODEL: str = Field(
default="deepseek-ai/DeepSeek-R1-Distill-Llama-70B",
description="API请求的模型名称,默认为 deepseek-reasoner ",
)
def __init__(self):
self.valves = self.Valves()
self.data_prefix = "data:"
self.emitter = None
def pipes(self):
return [
{
"id": self.valves.DEEPSEEK_API_MODEL,
"name": self.valves.DEEPSEEK_API_MODEL,
}
]
async def pipe(
self, body: dict, __event_emitter__: Callable[[dict], Awaitable[None]] = None
) -> AsyncGenerator[str, None]:
"""主处理管道(已移除缓冲)"""
thinking_state = {"thinking": -1} # 使用字典来存储thinking状态
self.emitter = __event_emitter__
# 验证配置
if not self.valves.DEEPSEEK_API_KEY:
yield json.dumps({"error": "未配置API密钥"}, ensure_ascii=False)
return
# 准备请求参数
headers = {
"Authorization": f"Bearer {self.valves.DEEPSEEK_API_KEY}",
"Content-Type": "application/json",
}
try:
# 模型ID提取
model_id = body["model"].split(".", 1)[-1]
payload = {**body, "model": model_id}
# 处理消息以防止连续的相同角色
messages = payload["messages"]
i = 0
while i < len(messages) - 1:
if messages[i]["role"] == messages[i + 1]["role"]:
# 插入具有替代角色的占位符消息
alternate_role = (
"assistant" if messages[i]["role"] == "user" else "user"
)
messages.insert(
i + 1,
{"role": alternate_role, "content": "[Unfinished thinking]"},
)
i += 1
# yield json.dumps(payload, ensure_ascii=False)
# 发起API请求
async with httpx.AsyncClient(http2=True) as client:
async with client.stream(
"POST",
f"{self.valves.DEEPSEEK_API_BASE_URL}/chat/completions",
json=payload,
headers=headers,
timeout=300,
) as response:
# 错误处理
if response.status_code != 200:
error = await response.aread()
yield self._format_error(response.status_code, error)
return
# 流式处理响应
async for line in response.aiter_lines():
if not line.startswith(self.data_prefix):
continue
# 截取 JSON 字符串
json_str = line[len(self.data_prefix) :]
try:
data = json.loads(json_str)
except json.JSONDecodeError as e:
# 格式化错误信息,这里传入错误类型和详细原因(包括出错内容和异常信息)
error_detail = f"解析失败 - 内容:{json_str},原因:{e}"
yield self._format_error("JSONDecodeError", error_detail)
return
choice = data.get("choices", [{}])[0]
# 结束条件判断
if choice.get("finish_reason"):
return
# 状态机处理
state_output = await self._update_thinking_state(
choice.get("delta", {}), thinking_state
)
if state_output:
yield state_output # 直接发送状态标记
if state_output == "<think>":
yield "\n"
# 内容处理并立即发送
content = self._process_content(choice["delta"])
if content:
if content.startswith("<think>"):
match = re.match(r"^<think>", content)
if match:
content = re.sub(r"^<think>", "", content)
yield "<think>"
await asyncio.sleep(0.1)
yield "\n"
elif content.startswith("</think>"):
match = re.match(r"^</think>", content)
if match:
content = re.sub(r"^</think>", "", content)
yield "</think>"
await asyncio.sleep(0.1)
yield "\n"
yield content
except Exception as e:
yield self._format_exception(e)
async def _update_thinking_state(self, delta: dict, thinking_state: dict) -> str:
"""更新思考状态机(简化版)"""
state_output = ""
# 状态转换:未开始 -> 思考中
if thinking_state["thinking"] == -1 and delta.get("reasoning_content"):
thinking_state["thinking"] = 0
state_output = "<think>"
# 状态转换:思考中 -> 已回答
elif (
thinking_state["thinking"] == 0
and not delta.get("reasoning_content")
and delta.get("content")
):
thinking_state["thinking"] = 1
state_output = "\n</think>\n\n"
return state_output
def _process_content(self, delta: dict) -> str:
"""直接返回处理后的内容"""
return delta.get("reasoning_content", "") or delta.get("content", "")
def _format_error(self, status_code: int, error: bytes) -> str:
# 如果 error 已经是字符串,则无需 decode
if isinstance(error, str):
error_str = error
else:
error_str = error.decode(errors="ignore")
try:
err_msg = json.loads(error_str).get("message", error_str)[:200]
except Exception as e:
err_msg = error_str[:200]
return json.dumps(
{"error": f"HTTP {status_code}: {err_msg}"}, ensure_ascii=False
)
def _format_exception(self, e: Exception) -> str:
"""异常格式化保持不变"""
err_type = type(e).__name__
return json.dumps({"error": f"{err_type}: {str(e)}"}, ensure_ascii=False)
我把我的函数完整的贴出给佬分析一下 反正 api 都是公开的公益~
他这个api返回的不是标准格式 最后一次流式返回多了一个[DONE] 我稍微改下就好了
1 个赞
v1.2.10 已修复
1 个赞
1.2.10没有小尾巴了 完美 多谢佬!
看看用的模型是不是函数生成出来的
火山引擎的怎么直接加啊?还是得自己chat api一下啊?