让claude3.7调了一阵子。。最后勉强写了一个吧,至少能用。
就是把带think标签的挪到reasoning content
里 这样可以省token,要不然很多时候一大半都是思考的token
这个流式可给他难坏了(可能是我问问题技艺不精)然后请求呢就是OpenAI格式的请求,URL变你的cf worker地址就可以,后面加/v1啥的,然后key我做了个调整key:https://endpoint.com/v1/chat/completions
endpoint一定要是完整的,实测可以从oneapi调用
欢迎各位佬可以提供更简单的实现
addEventListener('fetch', event => {
event.respondWith(handleRequest(event.request));
});
async function handleRequest(request) {
if (request.method !== 'POST') {
return new Response('Method Not Allowed', { status: 405 });
}
try {
// 解析请求体
const requestBody = await request.json();
// 从Authorization头中提取密钥和端点
const authHeader = request.headers.get('Authorization') || '';
const bearerMatch = authHeader.match(/^Bearer\s+(.+)$/i);
const keyField = bearerMatch ? bearerMatch[1] : (requestBody.api_key || '');
// 找到第一个冒号的位置,正确分割API密钥和端点URL
const colonIndex = keyField.indexOf(':');
if (colonIndex === -1) {
return new Response(JSON.stringify({
error: { message: 'Invalid API key format. Expected format: "key:https://endpoint.com"' }
}), { status: 400, headers: { 'Content-Type': 'application/json' }});
}
const apiKey = keyField.substring(0, colonIndex);
const endpoint = keyField.substring(colonIndex + 1);
// 验证URL格式
try {
new URL(endpoint);
} catch (e) {
return new Response(JSON.stringify({
error: { message: `Invalid endpoint URL: ${endpoint}` }
}), { status: 400, headers: { 'Content-Type': 'application/json' }});
}
// 准备发送到DeepSeek的请求
const isStreaming = requestBody.stream === true;
const deepseekRequest = {
model: requestBody.model || 'deepseek-chat',
messages: requestBody.messages || [],
temperature: requestBody.temperature,
top_p: requestBody.top_p,
max_tokens: requestBody.max_tokens,
stream: isStreaming
};
// 发送请求到DeepSeek API
const deepseekResponse = await fetch(endpoint, {
method: 'POST',
headers: {
'Content-Type': 'application/json',
'Authorization': `Bearer ${apiKey}`
},
body: JSON.stringify(deepseekRequest)
});
// 检查响应是否成功
if (!deepseekResponse.ok) {
const contentType = deepseekResponse.headers.get('Content-Type') || '';
// 尝试读取错误信息
if (contentType.includes('application/json')) {
const errorData = await deepseekResponse.json();
return new Response(JSON.stringify({
error: { message: `DeepSeek API error: ${JSON.stringify(errorData)}` }
}), { status: deepseekResponse.status, headers: { 'Content-Type': 'application/json' }});
} else {
// 非JSON错误响应
const errorText = await deepseekResponse.text();
return new Response(JSON.stringify({
error: { message: `DeepSeek API returned non-JSON error: ${errorText.substring(0, 100)}...` }
}), { status: 500, headers: { 'Content-Type': 'application/json' }});
}
}
// 处理流式或非流式响应
if (isStreaming) {
return handleStreamingResponse(deepseekResponse);
} else {
return handleNonStreamingResponse(deepseekResponse);
}
} catch (error) {
return new Response(JSON.stringify({
error: { message: `Error: ${error.message}` }
}), { status: 500, headers: { 'Content-Type': 'application/json' }});
}
}
// 处理流式响应
function handleStreamingResponse(response) {
const { readable, writable } = new TransformStream();
processStreamResponse(response.body, writable);
return new Response(readable, {
headers: {
'Content-Type': 'text/event-stream',
'Cache-Control': 'no-cache',
'Connection': 'keep-alive'
}
});
}
// 处理非流式响应
async function handleNonStreamingResponse(response) {
try {
const data = await response.json();
const processedData = processNonStreamResponse(data);
return new Response(JSON.stringify(processedData), {
headers: { 'Content-Type': 'application/json' }
});
} catch (error) {
return new Response(JSON.stringify({
error: { message: `Error processing response: ${error.message}` }
}), { status: 500, headers: { 'Content-Type': 'application/json' }});
}
}
// 处理流式数据
async function processStreamResponse(responseBody, writable) {
const writer = writable.getWriter();
const reader = responseBody.getReader();
const decoder = new TextDecoder();
const encoder = new TextEncoder();
try {
// 对于流式处理,直接转发原始响应
// 除非检测到<think>标签
while (true) {
const { done, value } = await reader.read();
if (done) break;
// 转发原始数据
await writer.write(value);
}
} catch (error) {
console.error('Stream processing error:', error);
} finally {
await writer.close();
}
}
// 对于请求内容的预处理,检查并提取<think>标签
async function processStreamResponse(responseBody, writable) {
const writer = writable.getWriter();
const reader = responseBody.getReader();
const decoder = new TextDecoder();
const encoder = new TextEncoder();
let buffer = '';
let insideThink = false;
let thinkContent = '';
let modelName = "deepseek-r1"; // Default, should be overridden with actual model from request
let hasStartedRegularContent = false;
try {
while (true) {
const { done, value } = await reader.read();
if (done) break;
buffer += decoder.decode(value, { stream: true });
// Process complete lines
const lines = buffer.split('\n');
buffer = lines.pop() || '';
for (const line of lines) {
if (line.trim() === '') continue;
if (line === 'data: [DONE]') {
await writer.write(encoder.encode('data: [DONE]\n\n'));
continue;
}
if (line.startsWith('data: ')) {
try {
// Parse the JSON data
const jsonData = JSON.parse(line.substring(6));
// Update model name if available
if (jsonData.model && !jsonData.model.includes("reasoning")) {
modelName = jsonData.model;
}
// Check if we have content in the delta
if (jsonData.choices && jsonData.choices[0] && jsonData.choices[0].delta) {
const delta = jsonData.choices[0].delta;
const content = delta.content || '';
// Handle <think> tags and content
if (content.includes('<think>') && !insideThink) {
insideThink = true;
// If <think> tag is not at the beginning, handle the text before it
const parts = content.split('<think>');
if (parts[0]) {
// Send any content before the <think> tag
const contentChunk = createContentChunk(parts[0], jsonData);
await writer.write(encoder.encode(`data: ${JSON.stringify(contentChunk)}\n\n`));
}
// Extract content from <think> tag if it's closed in the same chunk
if (content.includes('</think>')) {
const thinkMatch = content.match(/<think>([\s\S]*?)<\/think>/);
if (thinkMatch && thinkMatch[1]) {
// Send thinking content
const chunks = thinkMatch[1].match(/.{1,5}|.+/g) || [];
for (const chunk of chunks) {
const reasoningChunk = createReasoningChunk(chunk, jsonData, modelName);
await writer.write(encoder.encode(`data: ${JSON.stringify(reasoningChunk)}\n\n`));
}
// Handle content after </think>
const afterThink = content.split('</think>')[1] || '';
if (afterThink) {
hasStartedRegularContent = true;
const contentChunk = createContentChunk(afterThink, jsonData);
await writer.write(encoder.encode(`data: ${JSON.stringify(contentChunk)}\n\n`));
}
insideThink = false;
}
} else {
// Only the beginning of think tag, store what comes after <think>
thinkContent = parts[1] || '';
}
}
else if (content.includes('</think>') && insideThink) {
// Handle end of thinking
const parts = content.split('</think>');
thinkContent += parts[0];
// Send the complete thinking content
if (thinkContent.trim()) {
const chunks = thinkContent.match(/.{1,5}|.+/g) || [];
for (const chunk of chunks) {
const reasoningChunk = createReasoningChunk(chunk, jsonData, modelName);
await writer.write(encoder.encode(`data: ${JSON.stringify(reasoningChunk)}\n\n`));
}
}
// Reset thinking state
insideThink = false;
thinkContent = '';
// Handle content after </think>
if (parts[1]) {
hasStartedRegularContent = true;
const contentChunk = createContentChunk(parts[1], jsonData);
await writer.write(encoder.encode(`data: ${JSON.stringify(contentChunk)}\n\n`));
}
}
else if (insideThink) {
// Inside thinking, accumulate content
thinkContent += content;
// Send thinking chunks for better streaming experience
if (thinkContent.length > 10) {
const chunks = thinkContent.match(/.{1,5}|.+/g) || [];
for (const chunk of chunks) {
const reasoningChunk = createReasoningChunk(chunk, jsonData, modelName);
await writer.write(encoder.encode(`data: ${JSON.stringify(reasoningChunk)}\n\n`));
}
thinkContent = '';
}
}
else {
// Regular content outside of thinking
hasStartedRegularContent = true;
const contentChunk = createContentChunk(content, jsonData);
await writer.write(encoder.encode(`data: ${JSON.stringify(contentChunk)}\n\n`));
}
} else {
// No delta content or other message structure, pass through
await writer.write(encoder.encode(`${line}\n\n`));
}
} catch (e) {
// JSON parsing error, just forward the line
console.error("Error parsing JSON:", e);
await writer.write(encoder.encode(`${line}\n\n`));
}
} else {
// Not a data line, forward as is
await writer.write(encoder.encode(`${line}\n`));
}
}
}
// Process any remaining buffer
if (buffer.trim()) {
await writer.write(encoder.encode(`${buffer}\n\n`));
}
// If we have any remaining thinking content, send it
if (insideThink && thinkContent.trim()) {
const timestamp = Math.floor(Date.now() / 1000);
const id = generateRandomId();
const reasoningChunk = createReasoningChunk(thinkContent, { created: timestamp, id }, modelName);
await writer.write(encoder.encode(`data: ${JSON.stringify(reasoningChunk)}\n\n`));
}
} catch (error) {
console.error('Stream processing error:', error);
} finally {
await writer.close();
}
}
// Helper function to create a reasoning chunk
function createReasoningChunk(content, originalData, modelName) {
return {
id: originalData.id || generateRandomId(),
created: originalData.created || Math.floor(Date.now() / 1000),
model: `${modelName}`, // Use the original model name
object: "chat.completion.chunk",
choices: [{
delta: {
content: "",
reasoning_content: content,
role: "assistant"
},
index: 0
}],
usage: null
};
}
// Helper function to create a content chunk
function createContentChunk(content, originalData) {
return {
id: originalData.id || generateRandomId(),
created: originalData.created || Math.floor(Date.now() / 1000),
model: originalData.model,
object: "chat.completion.chunk",
choices: [{
delta: {
content: content,
role: "assistant"
},
index: 0
}],
usage: null
};
}
// Generate a random ID for responses
function generateRandomId() {
return Array.from({ length: 32 }, () =>
Math.floor(Math.random() * 16).toString(16)
).join('');
}
// 将思考内容作为reasoning_content发送
async function sendThinkContentAsReasoning(content, writer, encoder) {
// 将内容分成小块发送,模拟DeepSeek的流式行为
const chunks = content.match(/.{1,5}|.+/g) || [];
for (const chunk of chunks) {
const data = {
choices: [{
delta: {
content: "",
reasoning_content: chunk,
role: "assistant"
},
index: 0
}],
created: Math.floor(Date.now() / 1000),
id: generateRandomId(),
model: "deepseek-reasoning", // 使用请求中的模型名称更好
object: "chat.completion.chunk",
usage: null
};
await writer.write(encoder.encode(`data: ${JSON.stringify(data)}\n\n`));
}
}
// 将内容作为普通内容发送
async function sendAsContent(content, writer, encoder) {
const data = {
choices: [{
delta: {
content: content,
role: "assistant"
},
index: 0
}],
created: Math.floor(Date.now() / 1000),
id: generateRandomId(),
model: "deepseek-reasoning", // 使用请求中的模型名称更好
object: "chat.completion.chunk",
usage: null
};
await writer.write(encoder.encode(`data: ${JSON.stringify(data)}\n\n`));
}
// 生成随机ID
function generateRandomId() {
return Array.from({length: 32}, () =>
Math.floor(Math.random() * 16).toString(16)
).join('');
}
// 处理非流式响应中的<think>标签
function processNonStreamResponse(responseData) {
if (responseData.choices && responseData.choices[0] && responseData.choices[0].message) {
const content = responseData.choices[0].message.content || '';
// 检查是否包含<think>标签
const thinkMatch = content.match(/<think>([\s\S]*?)<\/think>/);
if (thinkMatch) {
// 提取思考内容
const thinkContent = thinkMatch[1];
// 更新消息内容,移除<think>标签
responseData.choices[0].message.content = content.replace(/<think>[\s\S]*?<\/think>/, '').trim();
// 添加reasoning_content字段
responseData.choices[0].message.reasoning_content = thinkContent;
}
}
return responseData;
}