Nvidia免费模型食用指南

NVIDIA 官方自产自销,新注册用户赠送 1k 积分

简单上手

注册账户

  1. 访问 NVIDIA官网,然后右上角点击 Login,在弹窗输入邮箱后点击 Next

  1. 输入密码并确认密码以及人类身份后点击 创建账户

  1. 登录邮箱查看新邮件,点击 Verify Email Address 验证

  1. 重复步骤1,点击提交

  1. 输入用户名,点击 Create NVIDIA Cloud Account

  1. 新注册用户赠送 1k 积分,右上角依次点击 头像 - Request More,填写企业信息可以获得 5k 积分

获取密钥

  1. 点击 Chat

  1. 依次点击 Get API Key - Generate Key - Copy Key 复制 Key

OneAPI 配置

对话模型

  • baseurl: https://integrate.api.nvidia.com
  • key: 复制得到的Key
  • model: yi-large, sea-lion-7b-instruct, starcoder2-7b, starcoder2-15b, dbrx-instruct, deepseek-coder-6.7b-instruct, gemma-7b, gemma-2b, gemma-2-9b-it, gemma-2-27b-it, codegemma-1.1-7b, codegemma-7b, recurrentgemma-2b, granite-34b-code-instruct, granite-8b-code-instruct, breeze-7b-instruct, codellama-70b, llama2-70b, llama3-8b, llama3-70b, llama-3.1-8b-instruct, llama-3.1-70b-instruct, llama-3.1-405b-instruct, phi-3-medium-128k-instruct, phi-3-medium-4k-instruct, phi-3-mini-128k-instruct, phi-3-mini-4k-instruct, phi-3-small-128k-instruct, phi-3-small-8k-instruct, codestral-22b-instruct-v0.1, mamba-codestral-7b-v0.1, mistral-7b-instruct, mistral-7b-instruct-v0.3, mixtral-8x7b-instruct, mixtral-8x22b-instruct, mistral-large, mistral-nemo-12b-instruct, llama3-chatqa-1.5-70b, llama3-chatqa-1.5-8b, nemotron-4-340b-instruct, nemotron-4-340b-reward, usdcode-llama3-70b-instruct, seallm-7b-v2.5, arctic, solar-10.7b-instruct
  • 模型重定向
{
   "yi-large":"01-ai/yi-large",
   "sea-lion-7b-instruct":"aisingapore/sea-lion-7b-instruct",
   "starcoder2-7b":"bigcode/starcoder2-7b",
   "starcoder2-15b":"bigcode/starcoder2-15b",
   "dbrx-instruct":"databricks/dbrx-instruct",
   "deepseek-coder-6.7b-instruct":"deepseek-ai/deepseek-coder-6.7b-instruct",
   "gemma-7b":"google/gemma-7b",
   "gemma-2b":"google/gemma-2b",
   "gemma-2-9b-it":"google/gemma-2-9b-it",
   "gemma-2-27b-it":"google/gemma-2-27b-it",
   "codegemma-1.1-7b":"google/codegemma-1.1-7b",
   "codegemma-7b":"google/codegemma-7b",
   "recurrentgemma-2b":"google/recurrentgemma-2b",
   "granite-34b-code-instruct":"ibm/granite-34b-code-instruct",
   "granite-8b-code-instruct":"ibm/granite-8b-code-instruct",
   "breeze-7b-instruct":"mediatek/breeze-7b-instruct",
   "codellama-70b":"meta/codellama-70b",
   "llama2-70b":"meta/llama2-70b",
   "llama3-8b":"meta/llama3-8b",
   "llama3-70b":"meta/llama3-70b",
   "llama-3.1-8b-instruct":"meta/llama-3.1-8b-instruct",
   "llama-3.1-70b-instruct":"meta/llama-3.1-70b-instruct",
   "llama-3.1-405b-instruct":"meta/llama-3.1-405b-instruct",
   "phi-3-medium-128k-instruct":"microsoft/phi-3-medium-128k-instruct",
   "phi-3-medium-4k-instruct":"microsoft/phi-3-medium-4k-instruct",
   "phi-3-mini-128k-instruct":"microsoft/phi-3-mini-128k-instruct",
   "phi-3-mini-4k-instruct":"microsoft/phi-3-mini-4k-instruct",
   "phi-3-small-128k-instruct":"microsoft/phi-3-small-128k-instruct",
   "phi-3-small-8k-instruct":"microsoft/phi-3-small-8k-instruct",
   "codestral-22b-instruct-v0.1":"mistralai/codestral-22b-instruct-v0.1",
   "mamba-codestral-7b-v0.1":"mistralai/mamba-codestral-7b-v0.1",
   "mistral-7b-instruct":"mistralai/mistral-7b-instruct",
   "mistral-7b-instruct-v0.3":"mistralai/mistral-7b-instruct-v0.3",
   "mixtral-8x7b-instruct":"mistralai/mixtral-8x7b-instruct",
   "mixtral-8x22b-instruct":"mistralai/mixtral-8x22b-instruct",
   "mistral-large":"mistralai/mistral-large",
   "mistral-nemo-12b-instruct":"nv-mistralai/mistral-nemo-12b-instruct",
   "llama3-chatqa-1.5-70b":"nvidia/llama3-chatqa-1.5-70b",
   "llama3-chatqa-1.5-8b":"nvidia/llama3-chatqa-1.5-8b",
   "nemotron-4-340b-instruct":"nvidia/nemotron-4-340b-instruct",
   "nemotron-4-340b-reward":"nvidia/nemotron-4-340b-reward",
   "usdcode-llama3-70b-instruct":"nvidia/usdcode-llama3-70b-instruct",
   "seallm-7b-v2.5":"seallms/seallm-7b-v2.5",
   "arctic":"snowflake/arctic",
   "solar-10.7b-instruct":"upstage/solar-10.7b-instruct"
}

绘图模型

  • baseurl: 你的Worker地址
  • key: 复制得到的Key
  • model: sdxl-lightning,stable-diffusion-3-medium,stable-diffusion-xl,sdxl-turbo
  • 模型重定向
{
   "sdxl-lightning":"bytedance/sdxl-lightning",
   "stable-diffusion-3-medium":"stabilityai/stable-diffusion-3-medium",
   "stable-diffusion-xl":"stabilityai/stable-diffusion-xl",
   "sdxl-turbo":"stabilityai/sdxl-turbo"
}
worker.js
const NVIDIA_BASE_URL = "https://ai.api.nvidia.com/v1/genai/";

addEventListener('fetch', event => {
  console.log('Received a fetch event');
  try {
    event.respondWith(handleRequest(event.request));
  } catch (error) {
    console.error('Top-level error handling', error);
    event.respondWith(handleError(error, 'Top-level error handling'));
  }
});

async function handleRequest(request) {
  console.log('Handling request:', request);
  const url = new URL(request.url);
  const path = url.pathname;

  // 路由表
  const routeMap = {
    'OPTIONS': handleCORS,
    'POST': {
      '/v1/chat/completions': handleChatCompletions
    },
    'GET': {
      '/file/': handleFileProxy
    }
  };

  const methodRoutes = routeMap[request.method];
  if (methodRoutes) {
    if (typeof methodRoutes === 'function') {
      console.log('Matching route found for method:', request.method);
      return await methodRoutes(request);
    } else {
      const matchingPath = Object.keys(methodRoutes).find(route => path.startsWith(route));
      if (matchingPath) {
        console.log('Matching path found:', matchingPath);
        return await methodRoutes[matchingPath](request, path);
      }
    }
  }

  // 默认 404 响应
  console.log('No matching route found. Returning 404.');
  return new Response('Not Found', { status: 404 });
}

function handleCORS() {
  console.log('Handling CORS request');
  const headers = {
    'Access-Control-Allow-Origin': '*',
    'Access-Control-Allow-Headers': '*',
    'Access-Control-Allow-Methods': 'GET, POST, OPTIONS'
  };
  return new Response(null, { headers });
}

async function handleFileProxy(request, path) {
  console.log('Handling file proxy request for path:', path);
  const imageUrl = `https://telegra.ph${path}`;
  const ifModifiedSince = request.headers.get('if-modified-since');

  const response = await fetch(imageUrl, {
    headers: {
      'If-Modified-Since': ifModifiedSince
    }
  });

  if (response.status === 304) {
    console.log('File not modified. Returning 304.');
    return new Response(null, {
      status: 304,
      headers: {
        'Last-Modified': ifModifiedSince,
        'Cache-Control': 'public, max-age=31536000'
      }
    });
  }

  const headers = new Headers(response.headers);
  headers.set('Cache-Control', 'public, max-age=31536000');

  console.log('File fetched successfully. Returning file response.');
  return new Response(response.body, {
    status: response.status,
    headers: headers
  });
}

async function handleChatCompletions(request) {
  console.log('Handling chat completions request');
  try {
    const authHeader = request.headers.get('Authorization');
    if (!authHeader?.startsWith('Bearer ')) {
      console.log('Unauthorized request');
      return new Response("Unauthorized", { status: 401 });
    }

    const { messages, model } = await request.json();
    if (!Array.isArray(messages) || messages.length === 0 || !model) {
      console.log('Invalid request format');
      return new Response("Invalid request format", { status: 400 });
    }

    const prompt = messages[messages.length - 1].content;
    if (typeof prompt !== 'string') {
      console.log('Invalid prompt format');
      return new Response("Invalid prompt format", { status: 400 });
    }

    console.log('Generating images with NVIDIA API');
    const imagesBase64 = await generateImagesWithNvidia(prompt, model, authHeader);

    if (!Array.isArray(imagesBase64)) {
      console.error('Unexpected response format from NVIDIA API:', imagesBase64);
      return new Response('Internal Server Error', { status: 500 });
    }

    console.log('Uploading images to Telegraph');
    const uploadPromises = imagesBase64.map(base64 => {
      const uint8Array = Uint8Array.from(atob(base64), c => c.charCodeAt(0));
      const uploadFormData = new FormData();
      uploadFormData.append('file', new Blob([uint8Array], { type: 'image/png' }), 'image.png');

      return fetch('https://telegra.ph/upload', {
        method: 'POST',
        body: uploadFormData
      });
    });

    const uploadResponses = await Promise.all(uploadPromises);

    const workerOrigin = request.url.match(/^(https?:\/\/[^\/]*?)\//)[1];
    const imagesURLs = await Promise.all(uploadResponses.map(async (response) => {
      if (!response.ok) {
        console.error('Failed to upload image');
        throw new Error('Failed to upload image');
      }
      const result = await response.json();
      return workerOrigin + result[0].src;
    }));

    const responsePayload = {
      id: `imggen-${Math.floor(Date.now() / 1000)}`,
      object: 'chat.completion.chunk',
      created: Date.now() / 1000,
      model: 'imagegeneration@006',
      choices: [
        {
          index: 0,
          delta: {
            content: imagesURLs.map(url => `![](${url})`).join('\n\n')
          },
          finish_reason: 'stop'
        }
      ]
    };

    console.log('Returning chat completions response');
    return new Response(
      `data: ${JSON.stringify(responsePayload)}\n\n`,
      {
        status: 200,
        headers: {
          'Access-Control-Allow-Origin': '*',
          'Access-Control-Allow-Headers': '*'
        }
      }
    );
  } catch (error) {
    console.error('Error handling chat completions', error);
    return handleError(error, 'Error handling chat completions');
  }
}

async function generateImagesWithNvidia(prompt, model, authorization) {
  console.log('Generating images with model:', model);
  const { url, payload } = getNvidiaRequestDetails(model, prompt);

  const response = await fetch(url, {
    method: 'POST',
    headers: {
      'Authorization': authorization,
      'Content-Type': 'application/json'
    },
    body: JSON.stringify(payload)
  });

  if (!response.ok) {
    console.error('NVIDIA API Error:', response.status);
    throw new Error(`NVIDIA API Error: ${response.status}`);
  }

  const data = await response.json();
  console.log('Received response from NVIDIA API:', data);

  if (Array.isArray(data.artifacts)) {
    return data.artifacts.map(artifact => artifact.base64);
  } else if (data.image) {
    return [data.image];
  } else {
    throw new Error('Unexpected response format from NVIDIA API');
  }
}

function getNvidiaRequestDetails(model, prompt) {
  console.log('Getting NVIDIA request details for model:', model);
  const configs = {
    'bytedance/sdxl-lightning': {
      url: `${NVIDIA_BASE_URL}bytedance/sdxl-lightning`,
      payload: {
        cfg_scale: 0, clip_guidance_preset: "NONE", height: 1024, width: 1024,
        sampler: "K_EULER_ANCESTRAL", samples: 1, seed: 0, steps: 4,
        style_preset: "none", text_prompts: [{ text: prompt, weight: 1 }]
      }
    },
    'stabilityai/stable-diffusion-3-medium': {
      url: `${NVIDIA_BASE_URL}stabilityai/stable-diffusion-3-medium`,
      payload: {
        aspect_ratio: "1:1", cfg_scale: 5, mode: "text-to-image", model: "sd3",
        negative_prompt: "", output_format: "jpeg", prompt, seed: 0, steps: 50
      }
    },
    'stabilityai/sdxl-turbo': {
      url: `${NVIDIA_BASE_URL}stabilityai/sdxl-turbo`,
      payload: {
        height: 512, width: 512, cfg_scale: 0, clip_guidance_preset: "NONE",
        sampler: "K_EULER_ANCESTRAL", samples: 1, seed: 0, steps: 4,
        style_preset: "none", text_prompts: [{ text: prompt, weight: 1 }]
      }
    },
    'stabilityai/stable-diffusion-xl': {
      url: `${NVIDIA_BASE_URL}stabilityai/stable-diffusion-xl`,
      payload: {
        height: 1024, width: 1024, cfg_scale: 5, clip_guidance_preset: "NONE",
        sampler: "K_EULER_ANCESTRAL", samples: 1, seed: 0, steps: 25,
        style_preset: "none", text_prompts: [{ text: prompt, weight: 1 }]
      }
    }
  };

  const config = configs[model];
  if (!config) {
    console.error('Unsupported model:', model);
    throw new Error(`Unsupported model: ${model}`);
  }
  return config;
}

async function uploadImageToTelegraph(imageBase64) {
  console.log('Uploading image to Telegraph');
  const uint8Array = Uint8Array.from(atob(imageBase64), c => c.charCodeAt(0));
  const uploadFormData = new FormData();
  uploadFormData.append('file', new Blob([uint8Array], { type: 'image/png' }), 'image.png');

  const response = await fetch('https://telegra.ph/upload', {
    method: 'POST',
    body: uploadFormData
  });

  if (!response.ok) {
    console.error('Failed to upload image to Telegraph');
    throw new Error('Failed to upload image to Telegraph');
  }

  const [{ src }] = await response.json();
  console.log('Image uploaded to Telegraph. URL:', src);
  return src;
}

function handleError(error, context) {
  console.error(context, error);
  return new Response('Internal Server Error', { status: 500 });
}

参考链接

71 个赞

前排前排,太强啦

2 个赞

666

太酷辣,佬:smile_cat:

1 个赞

前排,牛哇

太强啦

令人发指的强

牛啊佬

大佬厉害

好强,感谢分享

这个得玩一下了

这个怎么给他搞成企业,大佬 :kissing_heart:

太强了

R佬能挂上我的python转 openai格式么

感谢r佬分享

1 个赞

感谢大佬

emmm 问题是我找了一圈也没有发现这个api是怎么收费的。。。free的credit用完后怎么收费?

感谢分享

还是worker部署方便,感谢投喂

1 个赞

又一次看到大佬的分享,真感激